Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Cell Biochem ; 122(11): 1701-1714, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34346095

RESUMO

Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is the key regulatory enzyme of the purine salvage pathway present in the members of trypanosomatids. The parasite solely depends on this pathway for the synthesis of nucleotides due to the absence of the de novo pathway. This study intends to identify putative inhibitors towards Trypanosoma cruzi HGPRT (TcHGPRT). Initial virtual screening was performed with substructures of phosphoribosyl pyrophosphate (PRPP), an original substrate of HGPRT. Twenty compounds that had greater binding energy than the substrate was treated as hits and was further screened and narrowed down through induced fit docking which resulted in top five compounds which was distinguished into two groups based on the ligand occupancy within the PRPP binding site of TcHGPRT. Group-I compounds (PubChem CID 130316561 and 134978234) are analogous to PRPP structure with greater occupancy, were preferred over Group-II compounds which had lesser occupancy than the substrate. However, one compound (22404820) among Group II was chosen for further analysis considering its significant electrostatic interactions. Molecular docking studies revealed the requirement of an electronegative moiety like phosphate group to be present in the ligand due to the presence of metal ions in the substrate binding site. The three chosen compounds along with PRPP were subjected to molecular dynamics analysis, which indicated a strong presence of electrostatic interaction. Considering the dynamic stability of interactions as well as pharmacological properties of ligands based on absorption, distribution, metabolism, excretion prediction, Group-I compounds were selected as lead compounds and were subjected to molecular electrostatic potential analysis to determine the charge distribution of the compound. The overall analysis thus suggests both 130316561 and 134978234 can be used as TcHGPRT inhibitors. Furthermore, these computational results emphasize the requirement of phosphorylated ligands which are essential in mediating electrostatic interactions and to compete with the binding affinity of the original substrate.


Assuntos
Inibidores Enzimáticos/farmacologia , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Hipoxantina Fosforribosiltransferase/química , Proteínas de Protozoários/antagonistas & inibidores , Trypanosoma cruzi/enzimologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Humanos , Hipoxantina Fosforribosiltransferase/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Eletricidade Estática
2.
Biochem Pharmacol ; 188: 114524, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741333

RESUMO

Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects 7 million people worldwide. Considering the side effects and drug resistance shown by current treatments, the development of new anti-Chagas therapies is an urgent need. T. cruzi hypoxanthine phosphoribosyltransferase (TcHPRT), the key enzyme of the purine salvage pathway, is essential for the survival of trypanosomatids. Previously, we assessed the inhibitory effect of different bisphosphonates (BPs), HPRT substrate analogues, on the activity of the isolated enzyme. BPs are used as a treatment for bone diseases and growth inhibition studies on T. cruzi have associated BPs action with the farnesyl diphosphate synthase inhibition. Here, we demonstrated significant growth inhibition of epimastigotes in the presence of BPs and a strong correlation with our previous results on the isolated TcHPRT, suggesting this enzyme as a possible and important target for these drugs. We also found that the parasites exhibited a delay at S phase in the presence of zoledronate pointing out enzymes involved in the cell cycle, such as TcHPRT, as intracellular targets. Moreover, we validated that micromolar concentrations of zoledronate are capable to interfere with the progression of cell infection by this parasite. Altogether, our findings allow us to propose the repositioning of zoledronate as a promising candidate against Chagas disease and TcHPRT as a new target for future rational design of antiparasitic drugs.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Reposicionamento de Medicamentos/métodos , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Tripanossomicidas/administração & dosagem , Trypanosoma cruzi/efeitos dos fármacos , Ácido Zoledrônico/administração & dosagem , Animais , Conservadores da Densidade Óssea/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Chlorocebus aethiops , Humanos , Hipoxantina Fosforribosiltransferase/metabolismo , Trypanosoma cruzi/fisiologia , Células Vero
3.
Biochem Pharmacol ; 189: 114374, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33358826

RESUMO

We report here the evaluation of a novel in vitro experimental model, prolonged cultured human hepatocytes (PCHC), as an experimental system to evaluate the potency and duration of effects of oligonucleotide therapeutics. A novel observation was made on the redifferentiation of PCHC upon prolonged culturing based on mRNA profiling of characteristic hepatic differentiation marker genes albumin, transferrin, and transthyretin. Consistent with the known de-differentiation of cultured human hepatocytes, decreases in marker gene expression were observed upon culturing of the hepatocytes for 2 days. A novel observation of re-differentiation was observed on day 7 as demonstrated by an increase in expression of the marker genes to levels similar to that observed on the first day of culture. The expression of the differentiation marker genes was highest on day 7, followed by a gradual decrease but remained higher than that on day 2 for up to the longest culture duration evaluated of 41 days. The redifferentiation phenomenon suggests that PCHC may be useful for the evaluation of the duration of effects of oligonucleotide therapeutics on gene expression in human hepatocytes. A proof of concept study was thereby conducted with PCHC with a GalNAc-conjugated siRNA targeting human hypoxanthine phosphoribosyl transferase1 (HPRT1). HPRT1 mRNA expression in siRNA-treated cultures decreased to 21% of that in untreated hepatocytes on day 1, <10% from days 2 to 12, <20% from days 16 to 33, and eventually recovered to 64% by day 41. Our results suggest that PCHC represent a clinically-relevant cost- and time-efficient experimental tool to aid in the evaluation of GalNAc-siRNA silencing activity, providing information on both efficacy and duration of efficacy. PCHC may be applicable in the drug development setting as a species- and cell type-relevant experimental tool to aid the development of oligonucleotide therapeutics.


Assuntos
Acetilgalactosamina/biossíntese , Técnicas de Cultura de Células/métodos , Inativação Gênica/fisiologia , Hepatócitos/metabolismo , Hipoxantina Fosforribosiltransferase/biossíntese , RNA Interferente Pequeno/administração & dosagem , Acetilgalactosamina/antagonistas & inibidores , Acetilgalactosamina/genética , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Inativação Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Hipoxantina Fosforribosiltransferase/genética , RNA Interferente Pequeno/genética
4.
J Bacteriol ; 202(5)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31818925

RESUMO

Purine metabolism plays a ubiquitous role in the physiology of Mycobacterium tuberculosis and other mycobacteria. The purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is essential for M. tuberculosis growth in vitro; however, its precise role in M. tuberculosis physiology is unclear. Membrane-permeable prodrugs of specifically designed HGPRT inhibitors arrest the growth of M. tuberculosis and represent potential new antituberculosis compounds. Here, we investigated the purine salvage pathway in the model organism Mycobacterium smegmatis Using genomic deletion analysis, we confirmed that HGPRT is the only guanine and hypoxanthine salvage enzyme in M. smegmatis but is not required for in vitro growth of this mycobacterium or survival under long-term stationary-phase conditions. We also found that prodrugs of M. tuberculosis HGPRT inhibitors displayed an unexpected antimicrobial activity against M. smegmatis that is independent of HGPRT. Our data point to a different mode of mechanism of action for these inhibitors than was originally proposed.IMPORTANCE Purine bases, released by the hydrolytic and phosphorolytic degradation of nucleic acids and nucleotides, can be salvaged and recycled. The hypoxanthine-guanine phosphoribosyltransferase (HGPRT), which catalyzes the formation of guanosine-5'-monophosphate from guanine and inosine-5'-monophosphate from hypoxanthine, represents a potential target for specific inhibitor development. Deletion of the HGPRT gene (Δhgprt) in the model organism Mycobacterium smegmatis confirmed that this enzyme is not essential for M. smegmatis growth. Prodrugs of acyclic nucleoside phosphonates (ANPs), originally designed against HGPRT from Mycobacterium tuberculosis, displayed anti-M. smegmatis activities comparable to those obtained for M. tuberculosis but also inhibited the ΔhgprtM. smegmatis strain. These results confirmed that ANPs act in M. smegmatis by a mechanism independent of HGPRT.


Assuntos
Hipoxantina Fosforribosiltransferase/genética , Mycobacterium smegmatis/genética , Antituberculosos/química , Antituberculosos/farmacologia , Catálise , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Hipoxantina Fosforribosiltransferase/química , Hipoxantina Fosforribosiltransferase/metabolismo , Redes e Vias Metabólicas , Viabilidade Microbiana , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Plasmídeos/genética , Purinas/metabolismo
5.
Elife ; 82019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31552824

RESUMO

The alarmone (p)ppGpp regulates diverse targets, yet its target specificity and evolution remain poorly understood. Here, we elucidate the mechanism by which basal (p)ppGpp inhibits the purine salvage enzyme HPRT by sharing a conserved motif with its substrate PRPP. Intriguingly, HPRT regulation by (p)ppGpp varies across organisms and correlates with HPRT oligomeric forms. (p)ppGpp-sensitive HPRT exists as a PRPP-bound dimer or an apo- and (p)ppGpp-bound tetramer, where a dimer-dimer interface triggers allosteric structural rearrangements to enhance (p)ppGpp inhibition. Loss of this oligomeric interface results in weakened (p)ppGpp regulation. Our results reveal an evolutionary principle whereby protein oligomerization allows evolutionary change to accumulate away from a conserved binding pocket to allosterically alter specificity of ligand interaction. This principle also explains how another (p)ppGpp target GMK is variably regulated across species. Since most ligands bind near protein interfaces, we propose that this principle extends to many other protein-ligand interactions.


Assuntos
Bacillus subtilis/enzimologia , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Regulação Alostérica , Cristalografia por Raios X , Escherichia coli/enzimologia , Hipoxantina Fosforribosiltransferase/química , Hipoxantina Fosforribosiltransferase/metabolismo , Conformação Proteica , Multimerização Proteica
6.
Eur J Med Chem ; 159: 10-22, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30265958

RESUMO

Therapeutic treatment of tuberculosis (TB) is becoming increasingly problematic due to the emergence of drug resistant Mycobacterium tuberculosis (Mt). Thus, new targets for anti-TB drug discovery need to be identified to combat and eradicate this disease. One such target is hypoxanthine-guanine phosphoribosyltransferase (HGPRT) which synthesises the 6-oxopurine nucleoside monophosphates essential for DNA/RNA production. [3R,4R]-4-Hypoxanthin-9-yl-3-((S)-2-hydroxy-2-phosphonoethyl)oxy-1-N-(phosphonopropionyl)pyrrolidine and [3R,4R]-4-guanin-9-yl-3-((S)-2-hydroxy-2-phosphonoethyl)oxy-1-N-(phosphonopropionyl)pyrrolidine (compound 6) are the most potent inhibitors of MtHGPRT yet discovered having Ki values of 60 nM. The crystal structure of the MtHGPRT.6 complex was obtained and compared with that of human HGPRT in complex with the same inhibitor. These structures provide explanations for the 60-fold difference in the inhibition constants between these two enzymes and a foundation for the design of next generation inhibitors. In addition, crystal structures of MtHGPRT in complex with two pyrrolidine nucleoside phosphosphonate inhibitors plus pyrophosphate provide insights into the final stage of the catalytic reaction. As the first step in ascertaining if such compounds have the potential to be developed as anti-TB therapeutics, the tetra-(ethyl L-phenylalanine) tetraamide prodrug of 6 was tested in cell based assays. This compound arrested the growth of virulent Mt not only in its replicating phase (IC50 of 14 µΜ) but also in its latent phase (IC50 of 29 µΜ). Furthermore, it arrested the growth of Mt in infected macrophages (MIC50 of 85 µΜ) and has a low cytotoxicity in mammalian cells (CC50 of 132 ±â€¯20 µM). These inhibitors are therefore viewed as forerunners of new anti-TB chemotherapeutics.


Assuntos
Antituberculosos/farmacologia , Difosfonatos/farmacologia , Inibidores Enzimáticos/farmacologia , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Nucleosídeos/farmacologia , Pirrolidinas/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Células Cultivadas , Difosfonatos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Hipoxantina Fosforribosiltransferase/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/metabolismo , Nucleosídeos/química , Pirrolidinas/química , Relação Estrutura-Atividade , Células THP-1
7.
PLoS Negl Trop Dis ; 12(2): e0006301, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481567

RESUMO

Due to toxicity and compliance issues and the emergence of resistance to current medications new drugs for the treatment of Human African Trypanosomiasis are needed. A potential approach to developing novel anti-trypanosomal drugs is by inhibition of the 6-oxopurine salvage pathways which synthesise the nucleoside monophosphates required for DNA/RNA production. This is in view of the fact that trypanosomes lack the machinery for de novo synthesis of the purine ring. To provide validation for this approach as a drug target, we have RNAi silenced the three 6-oxopurine phosphoribosyltransferase (PRTase) isoforms in the infectious stage of Trypanosoma brucei demonstrating that the combined activity of these enzymes is critical for the parasites' viability. Furthermore, we have determined crystal structures of two of these isoforms in complex with several acyclic nucleoside phosphonates (ANPs), a class of compound previously shown to inhibit 6-oxopurine PRTases from several species including Plasmodium falciparum. The most potent of these compounds have Ki values as low as 60 nM, and IC50 values in cell based assays as low as 4 µM. This data provides a solid platform for further investigations into the use of this pathway as a target for anti-trypanosomal drug discovery.


Assuntos
Inibidores Enzimáticos/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Purinonas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/metabolismo , Domínio Catalítico , Descoberta de Drogas , Inibidores Enzimáticos/química , Humanos , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Hipoxantina Fosforribosiltransferase/química , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Modelos Moleculares , Pentosiltransferases/antagonistas & inibidores , Pentosiltransferases/química , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Interferência de RNA , Tripanossomicidas/química , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética
8.
ACS Chem Biol ; 13(1): 82-90, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29161011

RESUMO

Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) are the foremost causative agents of malaria. Due to the development of resistance to current antimalarial medications, new drugs for this parasitic disease need to be discovered. The activity of hypoxanthine-guanine-[xanthine]-phosphoribosyltransferase, HG[X]PRT, is reported to be essential for the growth of both of these parasites, making it an excellent target for antimalarial drug discovery. Here, we have used rational structure-based methods to design an inhibitor, [3R,4R]-4-guanin-9-yl-3-((S)-2-hydroxy-2-phosphonoethyl)oxy-1-N-(phosphonopropionyl)pyrrolidine, of PvHGPRT and PfHGXPRT that has Ki values of 8 and 7 nM, respectively, for these two enzymes. The crystal structure of PvHGPRT in complex with this compound has been determined to 2.85 Å resolution. The corresponding complex with human HGPRT was also obtained to allow a direct comparison of the binding modes of this compound with the two enzymes. The tetra-(ethyl l-phenylalanine) tetraamide prodrug of this compound was synthesized, and it has an IC50 of 11.7 ± 3.2 µM against Pf lines grown in culture and a CC50 in human A549 cell lines of 102 ± 11 µM, thus giving it a ∼10-fold selectivity index.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Plasmodium vivax/enzimologia , Domínio Catalítico , Técnicas de Química Sintética , Cristalografia por Raios X , Difosfonatos/química , Difosfonatos/farmacologia , Desenho de Fármacos , Proteínas de Escherichia coli/química , Humanos , Hipoxantina Fosforribosiltransferase/química , Hipoxantina Fosforribosiltransferase/metabolismo , Modelos Moleculares , Pentosiltransferases/antagonistas & inibidores , Pentosiltransferases/química , Pentosiltransferases/metabolismo , Conformação Proteica
9.
ChemMedChem ; 12(14): 1133-1141, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28628279

RESUMO

Acyclic nucleoside phosphonates (ANPs) are an important class of therapeutic drugs that act as antiviral agents by inhibiting viral DNA polymerases and reverse transcriptases. ANPs containing a 6-oxopurine unit instead of a 6-aminopurine or pyrimidine base are inhibitors of the purine salvage enzyme, hypoxanthine-guanine-[xanthine] phosphoribosyltransferase (HG[X]PRT). Such compounds, and their prodrugs, are able to arrest the growth of Plasmodium falciparum (Pf) in cell culture. A new series of ANPs were synthesized and tested as inhibitors of human HGPRT, PfHGXPRT, and Plasmodium vivax (Pv) HGPRT. The novelty of these compounds is that they contain a five-membered heterocycle (imidazoline, imidazole, or triazole) inserted between the acyclic linker(s) and the nucleobase, namely, 9-deazahypoxanthine. Five of the compounds were found to be micromolar inhibitors of PfHGXPRT and PvHGPRT, but no inhibition of human HGPRT was observed under the same assay conditions. This demonstrates selectivity of these types of compounds for the two parasitic enzymes compared to the human counterpart and confirms the importance of the chemical nature of the acyclic moiety in conferring affinity/selectivity for these three enzymes.


Assuntos
Antimaláricos/síntese química , Hipoxantinas/química , Nucleosídeos/síntese química , Organofosfonatos/síntese química , Pentosiltransferases/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Plasmodium vivax/enzimologia , Antimaláricos/química , Humanos , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Modelos Moleculares , Nucleosídeos/química , Organofosfonatos/química , Relação Estrutura-Atividade
10.
Curr Drug Discov Technol ; 14(1): 8-24, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27978783

RESUMO

BACKGROUND: Guanine phosphoribosyltransferase (GPRT) is a very attractive target for the development of new drugs against G. lamblia because of its critical role in the synthesis of DNA and RNA. Herein we report the use of in silico approaches to identify potential G. lamblia GPRT inhibitors. METHODS: Analyses of the binding site of the enzyme accomplished through the use of several methods allowed the construction of a pharmacophore model, which was screened against a database of commercial substances. The resulting retrieved compounds were then screened against GPRT by consensus docking with two different methods, and the top 10% scored compounds had their poses visually inspected. Root Mean Square Deviation (RMSD) values ≤ 2.0 Å were used to define a consensual pose while RMSD values between 2 and 3 Å defined a partial consensus. Main toxicity endpoints were predicted through substructural analyses. RESULTS: From the 1,230 compounds retrieved in the pharmacophore-based screening, eleven had their binding modes consensually ascribed by the docking methods, suggesting a better selectivity for the parasite enzyme in comparison to the human counterpart by avoiding steric bumps with a flexible loop in the human enzyme binding site. One compound, ZINC38139588, was predicted to be totally devoid of toxicity, being perhaps the most promising of this series. CONCLUSION: Through rigorously validated docking protocols, we predicted the binding mode of these compounds in the GPRT binding site. The use of a consensus docking strategy yielded more reliable predictions of the binding modes to guide the future biological assays.


Assuntos
Antiparasitários/química , Giardia lamblia/enzimologia , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Simulação de Acoplamento Molecular , Proteínas de Protozoários/antagonistas & inibidores , Sítios de Ligação , Desenho de Fármacos , Hipoxantina Fosforribosiltransferase/química , Proteínas de Protozoários/química
11.
Sci Rep ; 6: 35894, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27786284

RESUMO

Human African Trypanosomiasis (HAT) is a life-threatening infectious disease caused by the protozoan parasite, Trypanosoma brucei (Tbr). Due to the debilitating side effects of the current therapeutics and the emergence of resistance to these drugs, new medications for this disease need to be developed. One potential new drug target is 6-oxopurine phosphoribosyltransferase (PRT), an enzyme central to the purine salvage pathway and whose activity is critical for the production of the nucleotides (GMP and IMP) required for DNA/RNA synthesis within this protozoan parasite. Here, the first crystal structures of this enzyme have been determined, these in complex with GMP and IMP and with three acyclic nucleoside phosphonate (ANP) inhibitors. The Ki values for GMP and IMP are 30.5 µM and 77 µM, respectively. Two of the ANPs have Ki values considerably lower than for the nucleotides, 2.3 µM (with guanine as base) and 15.8 µM (with hypoxanthine as base). The crystal structures show that when two of the ANPs bind, they induce an unusual conformation change to the loop where the reaction product, pyrophosphate, is expected to bind. This and other structural differences between the Tbr and human enzymes suggest selective inhibitors for the Tbr enzyme can be designed.


Assuntos
Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Hipoxantina Fosforribosiltransferase/química , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Hipoxantina Fosforribosiltransferase/genética , Cinética , Modelos Moleculares , Conformação Proteica , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética
12.
Int J Biol Macromol ; 83: 78-96, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26616453

RESUMO

Hypoxanthine Phosphoribosyltransferase (HGPRT; EC 2.4.2.8) is a central enzyme in the purine recycling pathway of all protozoan parasites. Protozoan parasites cannot synthesize purine bases (DNA/RNA) which is essential for survival as lack of de-novo pathway. Thus its good target for drug design and discovery as inhibition leads to cessation of replication. PRTase (transferase enzyme) has common PRTase type I folding pattern domain for its activities. Genomic studies revealed the sequence pattern and identified highly conserved residues that catalyzed the reaction in protozoan parasites. A recombinant protein has 24 kDa molecular mass (rLdHGPRT) was cloned, expressed and purified for testing of guanosine monophosphate (GMP) analogous compounds in-vitro by spectroscopically to the rLdHGPRT, lysates protein and MTT assay on Leishmania donovani. The predicted inhibitors of different libraries were screen into FlexX. The reported inhibitors were tested in-vitro. The 2'-deoxyguanosine 5'-diphosphate (DGD) (IC50 value 12.5 µM) is two times more effective when compared to guanosine-5'-diphosphate sodium (GD). Interestingly, LdHGPRT complex has shown stable after 24 ns in molecular dynamics simulation with interacting amino acids are Glu125, Ile127, Lys87 and Val186. QSAR studies revealed the correlation between predicted and experimental values has shown R2 0.998. Concludes that inversely proportional to their docked score with activities.


Assuntos
Inibidores Enzimáticos/farmacologia , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Hipoxantina Fosforribosiltransferase/metabolismo , Leishmania donovani/enzimologia , Sequência de Aminoácidos , Clonagem Molecular/métodos , Simulação por Computador , Guanosina Difosfato/metabolismo , Guanosina Monofosfato/metabolismo , Leishmania donovani/metabolismo , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
13.
ChemMedChem ; 10(10): 1707-23, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26368337

RESUMO

Acyclic nucleoside phosphonates (ANPs) are a promising class of antimalarial therapeutic drug leads that exhibit a wide variety of Ki values for Plasmodium falciparum (Pf) and human hypoxanthine-guanine-(xanthine) phosphoribosyltransferases [HG(X)PRTs]. A novel series of ANPs, analogues of previously reported 2-(phosphonoethoxy)ethyl (PEE) and (R,S)-3-hydroxy-2-(phosphonomethoxy)propyl (HPMP) derivatives, were designed and synthesized to evaluate their ability to act as inhibitors of these enzymes and to extend our ongoing antimalarial structure-activity relationship studies. In this series, (S)-3-hydroxy-2-(phosphonoethoxy)propyl (HPEP), (S)-2-(phosphonomethoxy)propanoic acid (CPME), or (S)-2-(phosphonoethoxy)propanoic acid (CPEE) are the acyclic moieties. Of this group, (S)-3-hydroxy-2-(phosphonoethoxy)propylguanine (HPEPG) exhibits the highest potency for PfHGXPRT, with a Ki value of 0.1 µM and a Ki value for human HGPRT of 0.6 µM. The crystal structures of HPEPG and HPEPHx (where Hx=hypoxanthine) in complex with human HGPRT were obtained, showing specific interactions with active site residues. Prodrugs for the HPEP and CPEE analogues were synthesized and tested for in vitro antimalarial activity. The lowest IC50 value (22 µM) in a chloroquine-resistant strain was observed for the bis-amidate prodrug of HPEPG.


Assuntos
Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Nucleosídeos/farmacologia , Organofosfonatos/farmacologia , Plasmodium falciparum/enzimologia , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Hipoxantina Fosforribosiltransferase/metabolismo , Modelos Moleculares , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/química , Organofosfonatos/síntese química , Organofosfonatos/química , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade
14.
Bioorg Med Chem ; 23(17): 5502-10, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26275679

RESUMO

Acyclic nucleoside phosphonates (ANPs) that contain a 6-oxopurine base are good inhibitors of the human and Plasmodium falciparum 6-oxopurine phosphoribosyltransferases (PRTs), key enzymes of the purine salvage pathway. Chemical modifications, based on the crystal structures of several inhibitors in complex with the human PRTase, led to the design of a new class of inhibitors--the aza-ANPs. Because of the negative charges of the phosphonic acid moiety, their ability to cross cell membranes is, however, limited. Thus, phosphoramidate prodrugs of the aza-ANPs were prepared to improve permeability. These prodrugs arrest parasitemia with IC50 values in the micromolar range against Plasmodium falciparum-infected erythrocyte cultures (both chloroquine-sensitive and chloroquine-resistant Pf strains). The prodrugs exhibit low cytotoxicity in several human cell lines. Thus, they fulfill two essential criteria to qualify them as promising antimalarial drug leads.


Assuntos
Antimaláricos/metabolismo , Inibidores Enzimáticos/metabolismo , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Malária/tratamento farmacológico , Nucleotídeos/metabolismo , Organofosfonatos/química , Humanos , Modelos Moleculares , Pró-Fármacos
15.
J Med Chem ; 58(2): 827-46, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25494538

RESUMO

Hypoxanthine-guanine-[xanthine] phosphoribosyltransferase (HG[X]PRT) is considered an important target for antimalarial chemotherapy as it is the only pathway for the synthesis of the purine nucleoside monophosphates required for DNA/RNA production. Thus, inhibition of this enzyme should result in cessation of replication. The aza-acyclic nucleoside phosphonates (aza-ANPs) are good inhibitors of Plasmodium falciparum HGXPRT (PfHGXPRT), with Ki values as low as 0.08 and 0.01 µM for Plasmodium vivax HGPRT (PvHGPRT). Prodrugs of these aza-ANPs exhibit antimalarial activity against Pf lines with IC50 values (0.8-6.0 µM) and have low cytotoxicity against human cells. Crystal structures of six of these compounds in complex with human HGPRT have been determined. These suggest that the different affinities of these aza-ANPs could be due to the flexibility of the loops surrounding the active site as well as the flexibility of the inhibitors, allowing them to adapt to fit into three binding pockets of the enzyme(s).


Assuntos
Antimaláricos/síntese química , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Organofosfonatos/síntese química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Pró-Fármacos/síntese química , Antimaláricos/farmacologia , Sítios de Ligação , Humanos , Hipoxantina Fosforribosiltransferase/química , Organofosfonatos/farmacologia , Plasmodium falciparum/enzimologia , Plasmodium vivax/enzimologia , Pró-Fármacos/farmacologia
16.
J Mol Model ; 19(8): 3201-17, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23625031

RESUMO

The present work reports a series of novel cationic fullerene derivatives bearing a substituted-quinazolinone moiety as a side arm. Fullerene-quinazolinone conjugates synthesized using the 1,3-dipolar cycloaddition reaction of C60 with azomethine ylides generated from the corresponding Schiff bases of substituted quinazolinone were characterized by elemental analysis, FT-IR, (1)H NMR, (13)C NMR and ESI-MS and screened for their antibacterial activity against Mycobacterium tuberculosis (H 37 Rv strain). All the compounds exhibited significant activity with the most effective having MIC in the range of 1.562-3.125 µg/mL. Compound 9f exhibited good biological activity compared to standard drugs. We developed a computational strategy based on the modeled M. tuberculosis hypoxanthine-guanine phosphoribosyltransferase (HGPRT) using homology modeling techniques and studied its binding pattern with synthesized fullerene derivatives. We then explored the surface geometry of the protein to place the cage adjacent to the active site while optimizing its quinazolinone side arm to establish H bonding with active site residues.


Assuntos
Antituberculosos/síntese química , Proteínas de Bactérias/química , Inibidores Enzimáticos/síntese química , Fulerenos/química , Hipoxantina Fosforribosiltransferase/química , Mycobacterium tuberculosis/química , Quinazolinonas/química , Sequência de Aminoácidos , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Domínio Catalítico , Cátions , Inibidores Enzimáticos/farmacologia , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Ligação Proteica , Alinhamento de Sequência , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Termodinâmica
17.
J Med Chem ; 56(6): 2513-26, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23448281

RESUMO

Acyclic nucleoside phosphonates (ANPs) that contain a 6-oxopurine base are good inhibitors of the Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) 6-oxopurine phosphoribosyltransferases (PRTs). Chemical modifications based on the crystal structure of 2-(phosphonoethoxy)ethylguanine (PEEG) in complex with human HGPRT have led to the design of new ANPs. These novel compounds contain a second phosphonate group attached to the ANP scaffold. {[(2-[(Guanine-9H-yl)methyl]propane-1,3-diyl)bis(oxy)]bis(methylene)}diphosphonic acid (compound 17) exhibited a Ki value of 30 nM for human HGPRT and 70 nM for Pf HGXPRT. The crystal structure of this compound in complex with human HGPRT shows that it fills or partially fills three critical locations in the active site: the binding sites of the purine base, the 5'-phosphate group, and pyrophosphate. This is the first HG(X)PRT inhibitor that has been able to achieve this result. Prodrugs have been synthesized resulting in IC50 values as low as 3.8 µM for Pf grown in cell culture, up to 25-fold lower compared to the parent compounds.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Organofosfonatos/química , Organofosfonatos/farmacologia , Antimaláricos/toxicidade , Domínio Catalítico , Linhagem Celular Tumoral , Inibidores Enzimáticos/toxicidade , Humanos , Hipoxantina Fosforribosiltransferase/química , Modelos Moleculares , Organofosfonatos/toxicidade , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia
18.
J Med Chem ; 55(13): 6209-23, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22725979

RESUMO

Hypoxanthine-guanine-(xanthine) phosphoribosyltransferase (HG(X)PRT) is crucial for the survival of malarial parasites Plasmodium falciparum (Pf) and Plasmodium vivax (Pv). Acyclic nucleoside phosphonates (ANPs) are inhibitors of HG(X)PRT and arrest the growth of Pf in cell culture. Here, a novel class of ANPs containing trisubstituted nitrogen (aza-ANPs) has been synthesized. These compounds have a wide range of K(i) values and selectivity for human HGPRT, PfHGXPRT, and PvHGPRT. The most selective and potent inhibitor of PfHGXPRT is 9-[N-(3-methoxy-3-oxopropyl)-N-(2-phosphonoethyl)-2-aminoethyl]hypoxanthine (K(i) = 100 nM): no inhibition could be detected against the human enzyme. This compound exhibits the highest ever reported selectivity for PfHGXPRT compared to human HGPRT. For PvHGPRT, 9-[N-(2-carboxyethyl)-N-(2-phosphonoethyl)-2-aminoethyl]guanine has a K(i) of 50 nM, the best inhibitor discovered for this enzyme to date. Docking of these compounds into the known structures of human HGPRT in complex with ANP-based inhibitors suggests reasons for the variations in affinity, providing insights for the design of antimalarial drug candidates.


Assuntos
Antimaláricos/síntese química , Inibidores Enzimáticos/síntese química , Nucleosídeos/síntese química , Organofosfonatos/síntese química , Pentosiltransferases/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Antimaláricos/química , Antimaláricos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Malária/tratamento farmacológico , Modelos Moleculares , Conformação Molecular , Nucleosídeos/química , Nucleosídeos/farmacologia , Organofosfonatos/química , Organofosfonatos/farmacologia , Plasmodium falciparum/enzimologia , Plasmodium vivax/enzimologia , Ligação Proteica , Especificidade por Substrato
19.
Bioorg Med Chem ; 20(3): 1222-30, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22249123

RESUMO

6-Oxopurine acyclic nucleoside phosphonates (ANPs) have been shown to be potent inhibitors of hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT), a key enzyme of the purine salvage pathway in human malarial parasites. These compounds also exhibit antimalarial activity against parasites grown in culture. Here, a new series of ANPs, hypoxanthine and guanine 9-[2-hydroxy-3-(phosphonomethoxy)propyl] derivatives with different chemical substitutions in the 2'-position of the aliphatic chain were prepared and tested as inhibitors of Plasmodium falciparum (Pf) HGXPRT, Plasmodium vivax (Pv) HGPRT and human HGPRT. The attachment of an hydroxyl group to this position and the movement of the oxygen by one atom distal from N(9) in the purine ring compared with 2-(phosphonoethoxy)ethyl hypoxanthine (PEEHx) and 2-(phosphonoethoxy)ethyl guanine (PEEG) changes the affinity and selectivity for human HGPRT, PfHGXPRT and PvHGPRT. This is attributed to the differences in the three-dimensional structure of these inhibitors which affects their mode of binding. A novel observation is that these molecules are not always strictly competitive with 5-phospho-α-d-ribosyl-1-pyrophosphate. 9-[2-Hydroxy-3-(phosphonomethoxy)propyl]hypoxanthine (iso-HPMP-Hx) is a very weak inhibitor of human HGPRT but remains a good inhibitor of both the parasite enzymes with K(i) values of 2µM and 5µM for PfHGXPRT and PvHGPRT, respectively. The addition of pyrophosphate to the assay decreased the K(i) values for the parasite enzymes by sixfold. This suggests that the covalent attachment of a second group to the ANPs mimicking pyrophosphate and occupying its binding pocket could increase the affinity for these enzymes.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Pentosiltransferases/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Plasmodium vivax/enzimologia , Purinas/química , Purinas/farmacologia , Antimaláricos/síntese química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Hipoxantina Fosforribosiltransferase/metabolismo , Malária/tratamento farmacológico , Malária/enzimologia , Modelos Moleculares , Pentosiltransferases/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Purinas/síntese química
20.
Hum Mol Genet ; 21(3): 609-22, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22042773

RESUMO

Mutations in the gene encoding the purine biosynthetic enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) cause the intractable neurodevelopmental Lesch-Nyhan disease (LND) associated with aberrant development of brain dopamine pathways. In the current study, we have identified an increased expression of the microRNA miR181a in HPRT-deficient human dopaminergic SH-SY5Y neuroblastoma cells. Among the genes potentially regulated by miR181a are several known to be required for neural development, including Engrailed1 (En1), Engrailed2 (En2), Lmx1a and Brn2. We demonstrate that these genes are down-regulated in HPRT-deficient SH-SY5Y cells and that over-expression of miR181a significantly reduces endogenous expression of these genes and inhibits translation of luciferase plasmids bearing the En1/2 or Lmx1a 3'UTR miRNA-binding elements. Conversely, inhibition of miR181a increases the expression of these genes and enhances translation of luciferase constructs bearing the En1/2 and Lmx1a 3'UTR miRNA-binding sequences. We also demonstrate that key neurodevelopmental genes (e.g. Nurr1, Pitx3, Wnt1 and Mash1) known to be functional partners of Lmx1a and Brn2 are also markedly down-regulated in SH-SY5Y cells over-expressing miR181a and in HPRT-deficient cells. Our findings in SH-SY5Y cells demonstrate that HPRT deficiency is accompanied by dysregulation of some of the important pathways that regulate the development of dopaminergic neurons and dopamine pathways and that this defect is associated with and possibly due at least partly to aberrant expression of miR181a. Because aberrant expression of miR181a is not as apparent in HPRT-deficient LND fibroblasts, the relevance of the SH-SY5Y neuroblastoma cells to human disease remains to be proven. Nevertheless, we propose that these pleiotropic neurodevelopment effects of miR181a may play a role in the pathogenesis of LND.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica , Hipoxantina Fosforribosiltransferase/deficiência , Síndrome de Lesch-Nyhan/genética , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Células Cultivadas , Regulação para Baixo , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Hipoxantina Fosforribosiltransferase/genética , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Síndrome de Lesch-Nyhan/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...